Largest inscribed rectangles in convex polygons

نویسندگان

  • Christian Knauer
  • Lena Schlipf
  • Jens M. Schmidt
  • Hans Raj Tiwary
چکیده

We consider approximation algorithms for the problem of computing an inscribed rectangle having largest area in a convex polygon on n vertices. If the order of the vertices of the polygon is given, we present a randomized algorithm that computes an inscribed rectangle with area at least (1− ) times the optimum with probability t in time O( 1 log n) for any constant t < 1. We further give a deterministic approximation algorithm that computes an inscribed rectangle of area at least (1− ) times the optimum in running time O( 1 2 log n) and show how this running time can be slightly improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm for finding the largest inscribed rectangle in polygon

In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...

متن کامل

Largest Inscribed Rectangles in Convex Polygons ( Extended Abstract ) ∗

We consider approximation algorithms for the problem of computing an inscribed rectangle having largest area in a convex polygon on n vertices. If the order of the vertices of the polygon is given, we present a deterministic approximation algorithm that computes an inscribed rectangle of area at least 1− times the optimum in running time O( 1 log 1 log n). Furthermore, a randomized approximatio...

متن کامل

A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars

Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...

متن کامل

Finding largest rectangles in convex polygons

We consider the following geometric optimization problem: find a maximum-area rectangle and a maximum-perimeter rectangle contained in a given convex polygon with n vertices. We give exact algorithms that solve these problems in time O(n). We also give (1 − ε)-approximation algorithms that take time O(ε−3/2 + ε−1/2 log n) for maximizing the area and O(ε−3 + ε−1 log n) for maximizing the perimeter.

متن کامل

Convergence of the shadow sequence of inscribed polygons

Let P be a polygon inscribed in a circle. The shadow of P is a polygon P ′ whose vertices are at the midpoints of the arcs of consecutive points of P . The shadow sequence P , P , P , . . . is a sequence of inscribed polygons such that each P t is the shadow of P t−1 for all t ≥ 0. We show in this abstract that the shadow sequence converges to the regular polygon, and in such way that variance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Discrete Algorithms

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012